
Third-order integrable difference equations generated by a pair of second-order equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 1151

(http://iopscience.iop.org/0305-4470/39/5/009)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 03/06/2010 at 04:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 1151–1161 doi:10.1088/0305-4470/39/5/009

Third-order integrable difference equations generated
by a pair of second-order equations

Junta Matsukidaira1 and Daisuke Takahashi2

1 Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu,
Shiga 520-2194, Japan
2 Department of Mathematical Sciences, Waseda University, 3-4-1, Ohkubo, Shinjuku-ku,
Tokyo 169-8555, Japan

E-mail: junta@math.ryukoku.ac.jp and daisuket@waseda.jp

Received 17 October 2005, in final form 5 December 2005
Published 18 January 2006
Online at stacks.iop.org/JPhysA/39/1151

Abstract
We show that the third-order difference equations proposed by Hirota, Kimura
and Yahagi are generated by a pair of second-order difference equations. In
some cases, the pair of the second-order equations are equivalent to the Quispel–
Robert–Thomson (QRT) system, but in the other cases, they are irrelevant to
the QRT system. We also discuss an ultradiscretization of the equations.

PACS numbers: 02.30.Ik, 05.45.−a

1. Introduction

Discrete integrable systems have attracted much attention and a lot of studies have been done
from various points of view, such as integrability criteria (singularity confinement property
[1], algebraic entropy [2]), geometric or algebraic description of the equations [3–8] and
so on.

In particular, second-order integrable difference equations including Quispel–Robert–
Thomson (QRT) system [9, 10] and discrete Painlevé equations [11], which are regarded as
non-autonomous variations of QRT system, have been extensively studied, and a number of
significant properties have been obtained.

For example, a symmetric version of QRT system is defined by the following form:

xn+1 = f1(xn) − xn−1f2(xn)

f2(xn) − xn−1f3(xn)
, (1)

where fj (x) is defined byf1(x)

f2(x)

f3(x)

 = A

x2

x

1

 × B

x2

x

1

 , (2)
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with arbitrary symmetric 3 × 3 matrices A and B. This equation has a conserved quantity
h(xn−1, xn) defined by A and B. Moreover, a general solution is described by an elliptic
function.

However, very few results have been obtained for third-order integrable difference
equations. Research on such equations are important in order to reveal integrable structures
of general discrete integrable systems.

In this paper, we investigate third-order integrable difference equations proposed by
Hirota, Kimura and Yahagi [12] and show that they are generated by a pair of second-order
integrable difference equations. Moreover, we also discuss their ultradiscretization.

Hirota, Kimura and Yahagi have investigated third-order difference equations of the form

xn+2xn−1 = a0 + a1xn + a2xn+1 + a3xnxn+1

b0 + b1xn + b2xn+1 + b3xnxn+1
, (3)

and have found that nine equations,

xn+2xn−1 = a0 + a1(xn + xn+1) + a3xnxn+1

a3 + b1(xn + xn+1) + b3xnxn+1
, (Y1)

xn+2xn−1 = a0(1 + xn + xn+1) + a3xnxn+1

a0 + a3(xn + xn+1 + xnxn+1)
, (Y2)

xn+2xn−1 = a0(−1 + xn − xn+1) + a3xnxn+1

a0 + a3(xn − xn+1 − xnxn+1)
, (Y3)

xn+2xn−1 = a0 + a1(xn + xn+1 + xnxn+1)

1 + xn + xn+1 + xnxn+1
, (Y4)

xn+2xn−1 = a1(xn − xn+1) + a3xnxn+1

a3 + b1(−xn + xn+1)
, (Y5)

xn+2xn−1 = a3xnxn+1

b1(xn + xn+1) + b3xnxn+1
, (Y6)

xn+2xn−1 = a0 + a1xn

a1xn + a0xnxn+1
, (Y7)

xn+2xn−1 = a0 + a1xn

−a1xn + a0xnxn+1
, (Y8)

xn+2xn−1 = xn + xnxn+1

1 + xn

, (Y9)

are integrable in the sense that they have two independent conserved quantities. A remarkable
property of these equations is that their trajectory of a solution in three-dimensional phase
space looks like a composition of two separate curves. Figure 1 is an example of such
trajectories in 3D phase space which is generated by

yn+2yn−1 = a + yn + yn+1, (4)

where the equation is obtained through a variable transformation yn = a3
b1xn

, a = a3b3

b2
1

from
equation (Y6). Moreover, it is an important fact that odd step points belong to one curve and
even step points belong to the other.

This fact strongly suggests that a combination of lower dimensional integrable equations
determines the integrability of the third-order difference equation. We show that this is true
for all nine equations in the following section.
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Figure 1. A trajectory of a solution to equation (4) for a = 2.0, y0 = 1.0, y1 = 2.0, y2 = 1.5.

2. Pair of second-order integrable equations generating a third-order equation

2.1. Y6

If we take a backward difference of equation (4)

yn+2yn−1 = a + yn + yn+1,

we obtain

�n(yn+2yn−1 − a − yn − yn+1) = 0, (5)

where �n is a difference operator defined by �nfn = fn − fn−1. Equation (5) can be written
as

(1 + yn+2)(1 + yn)

yn+1
= (1 + yn)(1 + yn−2)

yn−1
. (6)

This formula means that there are constants which depend on the initial values and on a parity
of n. Hence, we obtain

(1 + gn+1)(1 + gn)

hn

= c0,

(1 + hn)(1 + hn−1)

gn

= c1,

(7)

where gn = y2n, hn = y2n+1, c0 = (1+y0)(1+y2)

y1
, c1 = (1+y1)(1+y3)

y2
. From equations (4) and (7),

we obtain a pair of second-order difference equations

gn+1 = (1 + ac0) + (1 + c0)gn

gn−1(1 + gn)
, (8)

hn+1 = (1 + ac1) + (1 + c1)hn

hn−1(1 + hn)
, (9)
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where equation (8) is a equation for even steps and equation (9) is a equation for odd steps,
respectively. Equations (8) and (9) can be written in the QRT form

gn+1 = G1(gn) − gn−1G2(gn)

G2(gn) − gn−1G3(gn)
,

hn+1 = H1(hn) − hn−1H2(hn)

H2(hn) − hn−1H3(hn)
,

(10)

where

A(c) =
 1 2 + c 1 + c

2 + c 0 2 + 2c + ac + c2

1 + c 2 + 2c + ac + c2 (1 + c)(1 + ac)

 , B =
0 0 0

0 1 0
0 0 0

 , (11)

G1(x)

G2(x)

G3(x)

 = A(c0)

x2

x

1

 × B

x2

x

1

 ,

H1(x)

H2(x)

H3(x)

 = A(c1)

x2

x

1

 × B

x2

x

1

 . (12)

Consequently, conserved quantities of equations (8) and (9) are given as

k0 = (
g2

ng
2
n+1 + (2 + c0)(gn + gn+1)gngn+1 + (1 + c0)

(
g2

n + g2
n+1

)
+

(
2 + 2c0 + ac0 + c2

0

)
(gn + gn+1) + (1 + c0)(1 + ac0)

)/
(gngn+1), (13)

and

k1 = (
h2

nh
2
n+1 + (2 + c1)(hn + hn+1)hnhn+1 + (1 + c1)

(
h2

n + h2
n+1

)
+

(
2 + 2c1 + ac1 + c2

1

)
(hn + hn+1) + (1 + c1)(1 + ac1)

)/
(hnhn+1). (14)

Hence, invariant curves of equations (8) and (9) are given by the above equations. These
curves determine the structure of the trajectory of a solution to equation (Y6) in 3D phase
space as shown in figure 1. This is the simplified integrability structure of equation (Y6) and
we show below that a similar structure exists in the other eight equations.

2.2. Y1

From equation (Y1)

xn+2xn−1 = a0 + a1(xn + xn+1) + a3xnxn+1

a3 + b1(xn + xn+1) + b3xnxn+1
, (Y1)

we obtain

�n((a3 + b1(xn + xn+1) + b3xnxn+1)xn+2xn−1 − (a0 + a1(xn + xn+1) + a3xnxn+1)) = 0. (15)

Equation (15) can be written as

b3xn+2xn + b1

(
xn+2 + xn +

xn+2xn

xn+1

)
+ a3

(
xn+2

xn+1
+

xn

xn+1

)
+

a1

xn+1

= b3xnxn−2 + b1

(
xn + xn−2 +

xnxn−2

xn−1

)
+ a3

(
xn

xn−1
+

xn−2

xn−1

)
+

a1

xn−1
. (16)

Hence, we obtain
gn = a1 + a3(hn−1 + hn) + b1hn−1hn

c1 − b1(hn−1 + hn) − b3hn−1hn

,

hn = a1 + a3(gn + gn+1) + b1gngn+1

c0 − b1(gn + gn+1) − b3gngn+1
,

(17)
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where gn = x2n, hn = x2n+1 and

c0 = 1

x1
(b1x0x2 + a3x2 + a3x0 + a1) + b3x0x2 + b1(x0 + x2),

c1 = 1

x2
(b1x1x3 + a3x3 + a3x1 + a1) + b3x1x3 + b1(x1 + x3).

(18)

From equations (Y1) and (17), we obtain a pair of QRT systems
gn+1 = G1(gn) − gn−1G2(gn)

G2(gn) − gn−1G3(gn)
,

hn+1 = H1(hn) − hn−1H2(hn)

H2(hn) − hn−1H3(hn)
,

(19)

where

A(c) =


b2

1 − 2a3b3 +
a1b

2
3

b1
0 a2

3 − a1b1

0 2a2
3 − a0b3 + 2a3c − a1b3c

b1
2a1a3 − a0b1 + a1c

a2
3 − a1b1 2a1a3 − a0b1 + a1c a2

1 + a0c

 , (20)

B(c) =
b3 b1 0

b1 −c 0
0 0 0

 , (21)

G1(x)

G2(x)

G3(x)

= A(c0)

(
x2

x
1

)
× B(c0)

(
x2

x
1

)
,

H1(x)

H2(x)

H3(x)

= A(c1)

(
x2

x
1

)
× B(c1)

(
x2

x
1

)
.

(22)

2.3. Y4

From equation (Y4)

xn+2xn−1 = a0 + a1(xn+1 + xn + xn+1xn)

1 + xn + xn+1 + xn+1xn

, (Y4)

we obtain

�n((1 + xn + xn+1 + xn+1xn)xn+2xn−1 − (a0 + a1(xn+1 + xn + xn+1xn))) = 0. (23)

Equation (23) can be written as

(xn+2 + a1)(xn + a1)
xn+1 + 1

xn+1
= (xn + a1)(xn−2 + a1)

xn−1 + 1

xn−1
. (24)

From this equation, we obtain
gn = (hn + a1)(hn−1 + a1)

c1 − (hn + a1)(hn−1 + a1)
,

hn = (gn+1 + a1)(gn + a1)

c0 − (gn+1 + a1)(gn + a1)
,

(25)

where gn = x2n, hn = x2n+1 and

c0 = (x2 + a1)(x0 + a1)
x1 + 1

x1
, (26)
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c1 = (x3 + a1)(x1 + a1)
x2 + 1

x2
. (27)

From equations (Y4) and (25), we obtain a pair of QRT systems
gn+1 = G1(gn) − gn−1G2(gn)

G2(gn) − gn−1G3(gn)
,

hn+1 = H1(hn) − hn−1H2(hn)

H2(hn) − hn−1H3(hn)
,

(28)

where

A(c) =

 (a0 − a1 − c)(a1 − 1) 0 −(a0 − a1 − c)(a1 − 1)a2
1

0 a22 a23

−(a0 − a1 − c)(a1 − 1)a2
1 a32 a33

 ,

a22 = −2(a0 − a1)(a1 − 1)a2
1 + c

(
a0 − 2a1 + a3

1 − c
)
,

a23 = −2(a0 − a1)(a1 − 1)a3
1 + ca1

(−a0 + 2a0a1 − 2a2
1 + a3

1 − a1c
)
, (29)

a32 = a23,

a33 = −(a0 − a1)(a1 − 1)a4
1 + ca1

(−a0a1 + 2a0a
2
1 − a3

1 − a0c
)

B(c) =
 1 a1 0

a1 a2
1 − c 0

0 0 0

 , (30)

G1(x)

G2(x)

G3(x)

 = A(c0)

(
x2

x
1

)
× B(c0)

(
x2

x
1

)
,

H1(x)

H2(x)

H3(x)

 = A(c1)

(
x2

x
1

)
× B(c1)

(
x2

x
1

)
.

(31)

2.4. Y5

From equation (Y5)

xn+2xn−1 = a1xn − a1xn+1 + a3xnxn+1

a3 − b1xn + b1xn+1
, (Y5)

we obtain

xn+2xn−1(a3 − b1xn + b1xn+1) − (a1xn − a1xn+1 + a3xnxn+1)

+ xn+1xn−2(a3 − b1xn−1 + b1xn) − (a1xn−1 − a1xn + a3xn−1xn) = 0. (32)

Note that we do not take a backward difference but a sum of equation (Y5) here. Equation (32)
can be written as

a3
xn+2 − xn

xn+1
− a1

xn+1
+ b1(xn+2 + xn) − b1

xn+2xn

xn+1

= a3
xn − xn−2

xn−1
− a1

xn−1
+ b1(xn + xn−2) − b1

xnxn−2

xn−1
. (33)

From this equation, we obtain
gn = a3(hn − hn−1) − a1 − b1hnhn−1

c1 − b1(hn + hn−1)
,

hn = a3(gn+1 − gn) − a1 − b1gn+1gn

c0 − b1(gn+1 + gn)
,

(34)
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where gn = x2n, hn = x2n+1 and

c0 = a3
x2 − x0

x1
− a1

x1
+ b1(x2 + x0) − b1

x2x0

x1
, (35)

c1 = a3
x3 − x1

x2
− a1

x2
+ b1(x3 + x1) − b1

x3x1

x2
. (36)

From equations (Y5) and (34), we obtain a pair of QRT systems
gn+1 = G1(gn) − gn−1G2(gn)

G2(gn) − gn−1G3(gn)
,

hn+1 = H1(hn) − hn−1H2(hn)

H2(hn) − hn−1H3(hn)
,

(37)

where

A(c) =
 b2

1 0 −a2
3 − a1b1

0 2a2
3 a1c

−a2
3 − a1b1 a1c a2

1

 , (38)

B(c) =
 0 b1 0

b1 −c 0
0 0 0

 , (39)

G1(x)

G2(x)

G3(x)

 = A(c0)

(
x2

x
1

)
× B(c0)

(
x2

x
1

)
,

H1(x)

H2(x)

H3(x)

 = A(c1)

(
x2

x
1

)
× B(c1)

(
x2

x
1

)
.

(40)

2.5. Y7

Introducing a variable transformation xn = fn+1

fn
to equation (Y7)

xn+2xn−1 = a0 + a1xn

a1xn + a0xnxn+1
, (Y7)

we obtain

a0(fn+1 + fn−1) + a1
fn+1fn−1

fn

= a0(fn+3 + fn+1) + a1
fn+3fn+1

fn+2
. (41)

From this equation, we obtain
a0(gn+1 + gn) + a1

gn+1gn

hn

= c0

a0(hn + hn−1) + a1
hnhn−1

gn

= c1

(42)

where gn = f2n, hn = f2n+1 and

c0 = a0(g1 + g0) + a1
g1g0

h0
= f0a0

(
1 + x0x1 +

a1

a0
x1

)
, (43)

c1 = a0(h1 + h0) + a1
h1h0

g1
= f0a0x0

(
1 + x1x2 +

a1

a0
x2

)
. (44)
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From equation (42), we obtain a pair of QRT system
gn+1 = G1(gn) − gn−1G2(gn)

G2(gn) − gn−1G3(gn)
,

hn+1 = H1(hn) − hn−1H2(hn)

H2(hn) − hn−1H3(hn)
,

(45)

whereG1(x)

G2(x)

G3(x)

 =

 0 0 a2
0

(
a2

0 − a2
1

)
0

(
a2

0 − a2
1

)(
2a2

0 − a2
1

) −a0
(
2a2

0c0 − a2
1c0 + a0a1c1

)
a2

0

(
a2

0 − a2
1

) −a0
(
2a2

0c0 − a2
1c0 + a0a1c1

)
a0c0(a0c0 + a1c1)



×
(

x2

x
1

) a0a1 a0c1 0
a0c1 −c0c1 0

0 0 0

 (
x2

x
1

)
, (46)

H1(x)

H2(x)

H3(x)

 =

 0 0 a2
0

(
a2

0 − a2
1

)
0

(
a2

0 − a2
1

)(
2a2

0 − a2
1

) −a0
(
2a2

0c1 − a2
1c1 + a0a1c0

)
a2

0

(
a2

0 − a2
1

) −a0
(
2a2

0c1 − a2
1c1 + a0a1c0

)
a0c1(a0c1 + a1c0)



×
(

x2

x
1

) a0a1 a0c0 0
a0c0 −c0c1 0

0 0 0

 (
x2

x
1

)
. (47)

2.6. Y8

Introducing a dependent variable transformation xn = iyn, a
′
1 = ia1 to equation (Y8)

xn+2xn−1 = a0 + a1xn

−a1xn + a0xnxn+1
, (Y8)

we obtain

yn+2yn−1 = a0 + a′
1yn

a′
1yn + a0ynyn+1

.

This is equivalent to equation (Y7).

2.7. Y9

Introducing a variable transformation xn = f̃ n+1

f̃ n
to equation (Y9)

xn+2xn−1 = xn + xnxn+1

1 + xn

, (Y9)

we obtain
f̃ n+3f̃ n

f̃ n+2 + f̃ n+1
= f̃ n+2f̃ n−1

f̃ n+1 + f̃ n

. (48)

From this equation, we obtain

f̃ n+2f̃ n−1 = α(f̃ n+1 + f̃ n). (49)

By scaling as f̃ n = αfn, we obtain

fn+2fn−1 = fn+1 + fn. (50)

This is equation (4) in the case of a = 0.
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2.8. Y2

Equation (Y2) is written as

xn+2xn−1 = a + axn + axn+1 + xnxn+1

a + xn + xn+1 + xnxn+1
(Y2)

where a = a0/a3. Equation (Y2) is generated by a pair of second-order equation
gn+1 = −gn

(
1 +

(a + gn−1)
(
b0

(
a − g2

n

) − ac
)

(a − 1)2(a − gn)(gn + gn−1) + b0gn(a + agn + agn−1 + gngn−1) − acgn

)
,

hn+1 = −hn

(
1 +

(a + hn−1)
(
b1

(
a − h2

n

) − ac
)

(a − 1)2(a − hn)(hn + hn−1) + b1gn(a + ahn + ahn−1 + hnhn−1) − achn

)
,

(51)

where gn = x2n, hn = x2n+1 and

c = 1

x0x1x2
(1 + x0)(1 + x1)(1 + x2)(a(1 + x0 + x1 + x2) + x0x1 + x1x2 + x2x0 + x0x1x2),

(52)

b0 = 1

x0x1x2
{(a − 1)x0x2(1 + x1)

2 + (1 + x1 + x0x1 + x1x2)(a(1 + x0 + x1 + x2)

+ x0x1 + x1x2 + x2x0 + x0x1x2), (53)

b1 = 1

x1x2x3
{(a − 1)x1x3(1 + x2)

2 + (1 + x2 + x1x2 + x2x3)(a(1 + x1 + x2 + x3)

+ x1x2 + x2x3 + x3x1 + x1x2x3). (54)

Equation (51) does not belong to the QRT system as it stands, though there is still a
possibility that it could be reduced to the system through a change of variable.

2.9. Y3

For equation (Y3), we can only show numerical results. For various parameters a0, a3 and
initial values x0 ∼ x2, it is generated by a pair of second-order equations on even steps (gn)

and odd steps (hn). In any case, both equations follows

gn+1 =
∑

0�i,j�3 aijg
i
n−1g

j
n∑

0�i,j�3 bijg
i
n−1g

j
n

, hn+1 =
∑

0�i,j�3 cijh
i
n−1h

j
n∑

0�i,j�3 dijh
i
n−1h

j
n

, (55)

where aij ∼ dij are constant obtained from parameters and initial values numerically. This
fact strongly suggests that equation (Y3) is also derived from a pair of second-order equations.

3. Ultradiscretization

In this section, we consider an ultradiscrete version of the third-order integrable equations
[13, 14]. Since ultradiscretization requires a positivity of parameters and dependent variables
of the equations, (Y1), (Y2), (Y4), (Y6), (Y7) and (Y9) are ultradiscretizable. We show that
the procedure of ultradiscretization works well by equation (4) as an example.

If we use transformations yn = exp
(

Yn

ε

)
, a = exp

(
A
ε

)
for equation (4)

yn+2yn−1 = a + yn + yn+1,
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Figure 2. A trajectory of a solution to equation (56) for A = 2.0, Y0 = 2.0, Y1 = 2.01, Y2 = −5.1.
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Figure 3. An invariant curve of equation (57) for A = 2.0, Y0 = 2.0, Y1 = 2.01, Y2 = −5.1.

and take a limit ε → +0, then we have

Yn+2 = max(A, Yn, Yn+1) − Yn−1. (56)

This is an ultradiscrete version of equation (4). Figure 2 shows a trajectory of a solution to
equation (56) in 3D phase space.

It follows from the result for equation (4) in the previous section that equation (56) is
generated by a pair of ultradiscrete QRT system

Un+1 = max(0, A + C0, Un + max(0, C0)) − Un−1 − max(0, Un), (57)

Vn+1 = max(0, A + C1, Vn + max(0, C1)) − Vn−1 − max(0, Vn), (58)

C0 = max(0, Y0) + max(0, Y2) − Y1, (59)

C1 = max(0, Y1) + max(0, Y3) − Y2, (60)
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and invariant curves become

max(Un + Un+1, max(Un,Un+1) + max(0, C0), max(Un − Un+1, Un+1 − Un) + max(0, C0),

max(−Un,−Un+1) + max(0, C0, A + C0, 2C0),

−Un − Un+1 + max(0, C0) + max(0, A + C0)) = K0, (61)

and

max(Vn + Vn+1, max(Vn, Vn+1) + max(0, C1), max(Vn − Vn+1, Vn+1 − Vn) + max(0, C1),

max(−Vn,−Vn+1) + max(0, C1, A + C1, 2C1),

−Vn − Vn+1 + max(0, C1) + max(0, A + C1)) = K1. (62)

Figure 3 shows invariant curves for equation (57) determined by equation (61).

4. Conclusion

In this paper, we have shown that the third-order integrable difference equations proposed
by Hirota, Kimura and Yahagi are generated by a pair of second-order integrable difference
equations. In the case of equations (Y1) and (Y4)–(Y9), second-order difference equations
are a special case of the QRT system. In the case of equations (Y2) and (Y3), second-order
equations may not be the QRT system. Furthermore, we have shown that the procedure of
ultradiscretization works well for third-order equation, and derived second-order equations
and invariants curves are also ultradiscretizable.

Although the whole integrability structure of the general third-order equations is still
unknown, our work could be one of the keys to understanding the structure. Generating our
results, that is, investigating a connection between the general QRT system and the third-order
equations is an important future problem.
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