Third-order integrable difference equations generated by a pair of second-order equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 391151
(http://iopscience.iop.org/0305-4470/39/5/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 04:58

Please note that terms and conditions apply.

Third-order integrable difference equations generated by a pair of second-order equations

Junta Matsukidaira ${ }^{1}$ and Daisuke Takahashi ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
${ }^{2}$ Department of Mathematical Sciences, Waseda University, 3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
E-mail: junta@math.ryukoku.ac.jp and daisuket@waseda.jp

Received 17 October 2005, in final form 5 December 2005
Published 18 January 2006
Online at stacks.iop.org/JPhysA/39/1151

Abstract

We show that the third-order difference equations proposed by Hirota, Kimura and Yahagi are generated by a pair of second-order difference equations. In some cases, the pair of the second-order equations are equivalent to the Quispel-Robert-Thomson (QRT) system, but in the other cases, they are irrelevant to the QRT system. We also discuss an ultradiscretization of the equations.

PACS numbers: 02.30.Ik, 05.45.-a

1. Introduction

Discrete integrable systems have attracted much attention and a lot of studies have been done from various points of view, such as integrability criteria (singularity confinement property [1], algebraic entropy [2]), geometric or algebraic description of the equations [3-8] and so on.

In particular, second-order integrable difference equations including Quispel-RobertThomson (QRT) system [9, 10] and discrete Painlevé equations [11], which are regarded as non-autonomous variations of QRT system, have been extensively studied, and a number of significant properties have been obtained.

For example, a symmetric version of QRT system is defined by the following form:

$$
\begin{equation*}
x_{n+1}=\frac{f_{1}\left(x_{n}\right)-x_{n-1} f_{2}\left(x_{n}\right)}{f_{2}\left(x_{n}\right)-x_{n-1} f_{3}\left(x_{n}\right)}, \tag{1}
\end{equation*}
$$

where $f_{j}(x)$ is defined by

$$
\left(\begin{array}{l}
f_{1}(x) \tag{2}\\
f_{2}(x) \\
f_{3}(x)
\end{array}\right)=A\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right),
$$

with arbitrary symmetric 3×3 matrices A and B. This equation has a conserved quantity $h\left(x_{n-1}, x_{n}\right)$ defined by A and B. Moreover, a general solution is described by an elliptic function.

However, very few results have been obtained for third-order integrable difference equations. Research on such equations are important in order to reveal integrable structures of general discrete integrable systems.

In this paper, we investigate third-order integrable difference equations proposed by Hirota, Kimura and Yahagi [12] and show that they are generated by a pair of second-order integrable difference equations. Moreover, we also discuss their ultradiscretization.

Hirota, Kimura and Yahagi have investigated third-order difference equations of the form

$$
\begin{equation*}
x_{n+2} x_{n-1}=\frac{a_{0}+a_{1} x_{n}+a_{2} x_{n+1}+a_{3} x_{n} x_{n+1}}{b_{0}+b_{1} x_{n}+b_{2} x_{n+1}+b_{3} x_{n} x_{n+1}}, \tag{3}
\end{equation*}
$$

and have found that nine equations,

$$
\begin{align*}
& x_{n+2} x_{n-1}=\frac{a_{0}+a_{1}\left(x_{n}+x_{n+1}\right)+a_{3} x_{n} x_{n+1}}{a_{3}+b_{1}\left(x_{n}+x_{n+1}\right)+b_{3} x_{n} x_{n+1}} \tag{Y1}\\
& x_{n+2} x_{n-1}=\frac{a_{0}\left(1+x_{n}+x_{n+1}\right)+a_{3} x_{n} x_{n+1}}{a_{0}+a_{3}\left(x_{n}+x_{n+1}+x_{n} x_{n+1}\right)} \tag{Y2}\\
& x_{n+2} x_{n-1}=\frac{a_{0}\left(-1+x_{n}-x_{n+1}\right)+a_{3} x_{n} x_{n+1}}{a_{0}+a_{3}\left(x_{n}-x_{n+1}-x_{n} x_{n+1}\right)} \tag{Y3}\\
& x_{n+2} x_{n-1}=\frac{a_{0}+a_{1}\left(x_{n}+x_{n+1}+x_{n} x_{n+1}\right)}{1+x_{n}+x_{n+1}+x_{n} x_{n+1}} \tag{Y4}\\
& x_{n+2} x_{n-1}=\frac{a_{1}\left(x_{n}-x_{n+1}\right)+a_{3} x_{n} x_{n+1}}{a_{3}+b_{1}\left(-x_{n}+x_{n+1}\right)} \tag{Y5}\\
& x_{n+2} x_{n-1}=\frac{a_{3} x_{n} x_{n+1}}{b_{1}\left(x_{n}+x_{n+1}\right)+b_{3} x_{n} x_{n+1}} \tag{Y6}\\
& x_{n+2} x_{n-1}=\frac{a_{0}+a_{1} x_{n}}{a_{1} x_{n}+a_{0} x_{n} x_{n+1}} \tag{Y7}\\
& x_{n+2} x_{n-1}=\frac{a_{0}+a_{1} x_{n}}{-a_{1} x_{n}+a_{0} x_{n} x_{n+1}} \tag{Y8}\\
& x_{n+2} x_{n-1}=\frac{x_{n}+x_{n} x_{n+1}}{1+x_{n}} \tag{Y9}
\end{align*}
$$

are integrable in the sense that they have two independent conserved quantities. A remarkable property of these equations is that their trajectory of a solution in three-dimensional phase space looks like a composition of two separate curves. Figure 1 is an example of such trajectories in 3D phase space which is generated by

$$
\begin{equation*}
y_{n+2} y_{n-1}=a+y_{n}+y_{n+1} \tag{4}
\end{equation*}
$$

where the equation is obtained through a variable transformation $y_{n}=\frac{a_{3}}{b_{1} x_{n}}, a=\frac{a_{3} b_{3}}{b_{1}^{2}}$ from equation ($Y 6$). Moreover, it is an important fact that odd step points belong to one curve and even step points belong to the other.

This fact strongly suggests that a combination of lower dimensional integrable equations determines the integrability of the third-order difference equation. We show that this is true for all nine equations in the following section.

Figure 1. A trajectory of a solution to equation (4) for $a=2.0, y_{0}=1.0, y_{1}=2.0, y_{2}=1.5$.
2. Pair of second-order integrable equations generating a third-order equation
2.1. Y6

If we take a backward difference of equation (4)

$$
y_{n+2} y_{n-1}=a+y_{n}+y_{n+1}
$$

we obtain

$$
\begin{equation*}
\Delta_{n}\left(y_{n+2} y_{n-1}-a-y_{n}-y_{n+1}\right)=0 \tag{5}
\end{equation*}
$$

where Δ_{n} is a difference operator defined by $\Delta_{n} f_{n}=f_{n}-f_{n-1}$. Equation (5) can be written as

$$
\begin{equation*}
\frac{\left(1+y_{n+2}\right)\left(1+y_{n}\right)}{y_{n+1}}=\frac{\left(1+y_{n}\right)\left(1+y_{n-2}\right)}{y_{n-1}} . \tag{6}
\end{equation*}
$$

This formula means that there are constants which depend on the initial values and on a parity of n. Hence, we obtain

$$
\left\{\begin{array}{l}
\frac{\left(1+g_{n+1}\right)\left(1+g_{n}\right)}{h_{n}}=c_{0}, \tag{7}\\
\frac{\left(1+h_{n}\right)\left(1+h_{n-1}\right)}{g_{n}}=c_{1},
\end{array}\right.
$$

where $g_{n}=y_{2 n}, h_{n}=y_{2 n+1}, c_{0}=\frac{\left(1+y_{0}\right)\left(1+y_{2}\right)}{y_{1}}, c_{1}=\frac{\left(1+y_{1}\right)\left(1+y_{3}\right)}{y_{2}}$. From equations (4) and (7), we obtain a pair of second-order difference equations

$$
\begin{align*}
& g_{n+1}=\frac{\left(1+a c_{0}\right)+\left(1+c_{0}\right) g_{n}}{g_{n-1}\left(1+g_{n}\right)} \tag{8}\\
& h_{n+1}=\frac{\left(1+a c_{1}\right)+\left(1+c_{1}\right) h_{n}}{h_{n-1}\left(1+h_{n}\right)} \tag{9}
\end{align*}
$$

where equation (8) is a equation for even steps and equation (9) is a equation for odd steps, respectively. Equations (8) and (9) can be written in the QRT form

$$
\left\{\begin{array}{l}
g_{n+1}=\frac{G_{1}\left(g_{n}\right)-g_{n-1} G_{2}\left(g_{n}\right)}{G_{2}\left(g_{n}\right)-g_{n-1} G_{3}\left(g_{n}\right)} \tag{10}\\
h_{n+1}=\frac{H_{1}\left(h_{n}\right)-h_{n-1} H_{2}\left(h_{n}\right)}{H_{2}\left(h_{n}\right)-h_{n-1} H_{3}\left(h_{n}\right)},
\end{array}\right.
$$

where

$$
\begin{align*}
& A(c)=\left(\begin{array}{ccc}
1 & 2+c & 1+c \\
2+c & 0 & 2+2 c+a c+c^{2} \\
1+c & 2+2 c+a c+c^{2} & (1+c)(1+a c)
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \tag{11}\\
& \left(\begin{array}{l}
G_{1}(x) \\
G_{2}(x) \\
G_{3}(x)
\end{array}\right)=A\left(c_{0}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right), \quad\left(\begin{array}{l}
H_{1}(x) \\
H_{2}(x) \\
H_{3}(x)
\end{array}\right)=A\left(c_{1}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) . \tag{12}
\end{align*}
$$

Consequently, conserved quantities of equations (8) and (9) are given as

$$
\begin{align*}
k_{0}=\left(g_{n}^{2} g_{n+1}^{2}\right. & +\left(2+c_{0}\right)\left(g_{n}+g_{n+1}\right) g_{n} g_{n+1}+\left(1+c_{0}\right)\left(g_{n}^{2}+g_{n+1}^{2}\right) \\
& \left.+\left(2+2 c_{0}+a c_{0}+c_{0}^{2}\right)\left(g_{n}+g_{n+1}\right)+\left(1+c_{0}\right)\left(1+a c_{0}\right)\right) /\left(g_{n} g_{n+1}\right) \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
k_{1}=\left(h_{n}^{2} h_{n+1}^{2}\right. & +\left(2+c_{1}\right)\left(h_{n}+h_{n+1}\right) h_{n} h_{n+1}+\left(1+c_{1}\right)\left(h_{n}^{2}+h_{n+1}^{2}\right) \\
& \left.+\left(2+2 c_{1}+a c_{1}+c_{1}^{2}\right)\left(h_{n}+h_{n+1}\right)+\left(1+c_{1}\right)\left(1+a c_{1}\right)\right) /\left(h_{n} h_{n+1}\right) \tag{14}
\end{align*}
$$

Hence, invariant curves of equations (8) and (9) are given by the above equations. These curves determine the structure of the trajectory of a solution to equation ($Y 6$) in 3D phase space as shown in figure 1. This is the simplified integrability structure of equation $(Y 6)$ and we show below that a similar structure exists in the other eight equations.

2.2. YI

From equation $(Y 1)$

$$
\begin{equation*}
x_{n+2} x_{n-1}=\frac{a_{0}+a_{1}\left(x_{n}+x_{n+1}\right)+a_{3} x_{n} x_{n+1}}{a_{3}+b_{1}\left(x_{n}+x_{n+1}\right)+b_{3} x_{n} x_{n+1}} \tag{Y1}
\end{equation*}
$$

we obtain
$\Delta_{n}\left(\left(a_{3}+b_{1}\left(x_{n}+x_{n+1}\right)+b_{3} x_{n} x_{n+1}\right) x_{n+2} x_{n-1}-\left(a_{0}+a_{1}\left(x_{n}+x_{n+1}\right)+a_{3} x_{n} x_{n+1}\right)\right)=0$.
Equation (15) can be written as

$$
\begin{align*}
b_{3} x_{n+2} x_{n}+ & b_{1}\left(x_{n+2}+x_{n}+\frac{x_{n+2} x_{n}}{x_{n+1}}\right)+a_{3}\left(\frac{x_{n+2}}{x_{n+1}}+\frac{x_{n}}{x_{n+1}}\right)+\frac{a_{1}}{x_{n+1}} \\
& =b_{3} x_{n} x_{n-2}+b_{1}\left(x_{n}+x_{n-2}+\frac{x_{n} x_{n-2}}{x_{n-1}}\right)+a_{3}\left(\frac{x_{n}}{x_{n-1}}+\frac{x_{n-2}}{x_{n-1}}\right)+\frac{a_{1}}{x_{n-1}} . \tag{16}
\end{align*}
$$

Hence, we obtain

$$
\left\{\begin{array}{l}
g_{n}=\frac{a_{1}+a_{3}\left(h_{n-1}+h_{n}\right)+b_{1} h_{n-1} h_{n}}{c_{1}-b_{1}\left(h_{n-1}+h_{n}\right)-b_{3} h_{n-1} h_{n}} \tag{17}\\
h_{n}=\frac{a_{1}+a_{3}\left(g_{n}+g_{n+1}\right)+b_{1} g_{n} g_{n+1}}{c_{0}-b_{1}\left(g_{n}+g_{n+1}\right)-b_{3} g_{n} g_{n+1}}
\end{array}\right.
$$

where $g_{n}=x_{2 n}, h_{n}=x_{2 n+1}$ and

$$
\begin{align*}
& c_{0}=\frac{1}{x_{1}}\left(b_{1} x_{0} x_{2}+a_{3} x_{2}+a_{3} x_{0}+a_{1}\right)+b_{3} x_{0} x_{2}+b_{1}\left(x_{0}+x_{2}\right), \\
& c_{1}=\frac{1}{x_{2}}\left(b_{1} x_{1} x_{3}+a_{3} x_{3}+a_{3} x_{1}+a_{1}\right)+b_{3} x_{1} x_{3}+b_{1}\left(x_{1}+x_{3}\right) . \tag{18}
\end{align*}
$$

From equations ($Y 1$) and (17), we obtain a pair of QRT systems

$$
\left\{\begin{array}{l}
g_{n+1}=\frac{G_{1}\left(g_{n}\right)-g_{n-1} G_{2}\left(g_{n}\right)}{G_{2}\left(g_{n}\right)-g_{n-1} G_{3}\left(g_{n}\right)}, \tag{19}\\
h_{n+1}=\frac{H_{1}\left(h_{n}\right)-h_{n-1} H_{2}\left(h_{n}\right)}{H_{2}\left(h_{n}\right)-h_{n-1} H_{3}\left(h_{n}\right)},
\end{array}\right.
$$

where

$$
A(c)=\left(\begin{array}{ccc}
b_{1}^{2}-2 a_{3} b_{3}+\frac{a_{1} b_{3}^{2}}{b_{1}} & 0 & a_{3}^{2}-a_{1} b_{1} \tag{20}\\
0 & 2 a_{3}^{2}-a_{0} b_{3}+2 a_{3} c-\frac{a_{1} b_{3} c}{b_{1}} & 2 a_{1} a_{3}-a_{0} b_{1}+a_{1} c \\
a_{3}^{2}-a_{1} b_{1} & 2 a_{1} a_{3}-a_{0} b_{1}+a_{1} c & a_{1}^{2}+a_{0} c
\end{array}\right)
$$

$B(c)=\left(\begin{array}{ccc}b_{3} & b_{1} & 0 \\ b_{1} & -c & 0 \\ 0 & 0 & 0\end{array}\right)$,

$$
\left(\begin{array}{c}
G_{1}(x) \tag{22}\\
G_{2}(x) \\
G_{3}(x)
\end{array}\right)=A\left(c_{0}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(c_{0}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right), \quad\left(\begin{array}{l}
H_{1}(x) \\
H_{2}(x) \\
H_{3}(x)
\end{array}\right)=A\left(c_{1}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(c_{1}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) .
$$

2.3. Y4

From equation ($Y 4$)

$$
\begin{equation*}
x_{n+2} x_{n-1}=\frac{a_{0}+a_{1}\left(x_{n+1}+x_{n}+x_{n+1} x_{n}\right)}{1+x_{n}+x_{n+1}+x_{n+1} x_{n}} \tag{Y4}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\Delta_{n}\left(\left(1+x_{n}+x_{n+1}+x_{n+1} x_{n}\right) x_{n+2} x_{n-1}-\left(a_{0}+a_{1}\left(x_{n+1}+x_{n}+x_{n+1} x_{n}\right)\right)\right)=0 \tag{23}
\end{equation*}
$$

Equation (23) can be written as

$$
\begin{equation*}
\left(x_{n+2}+a_{1}\right)\left(x_{n}+a_{1}\right) \frac{x_{n+1}+1}{x_{n+1}}=\left(x_{n}+a_{1}\right)\left(x_{n-2}+a_{1}\right) \frac{x_{n-1}+1}{x_{n-1}} . \tag{24}
\end{equation*}
$$

From this equation, we obtain

$$
\left\{\begin{array}{l}
g_{n}=\frac{\left(h_{n}+a_{1}\right)\left(h_{n-1}+a_{1}\right)}{c_{1}-\left(h_{n}+a_{1}\right)\left(h_{n-1}+a_{1}\right)} \tag{25}\\
h_{n}=\frac{\left(g_{n+1}+a_{1}\right)\left(g_{n}+a_{1}\right)}{c_{0}-\left(g_{n+1}+a_{1}\right)\left(g_{n}+a_{1}\right)}
\end{array}\right.
$$

where $g_{n}=x_{2 n}, h_{n}=x_{2 n+1}$ and

$$
\begin{equation*}
c_{0}=\left(x_{2}+a_{1}\right)\left(x_{0}+a_{1}\right) \frac{x_{1}+1}{x_{1}} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
c_{1}=\left(x_{3}+a_{1}\right)\left(x_{1}+a_{1}\right) \frac{x_{2}+1}{x_{2}} \tag{27}
\end{equation*}
$$

From equations ($Y 4$) and (25), we obtain a pair of QRT systems

$$
\left\{\begin{array}{l}
g_{n+1}=\frac{G_{1}\left(g_{n}\right)-g_{n-1} G_{2}\left(g_{n}\right)}{G_{2}\left(g_{n}\right)-g_{n-1} G_{3}\left(g_{n}\right)} \tag{28}\\
h_{n+1}=\frac{H_{1}\left(h_{n}\right)-h_{n-1} H_{2}\left(h_{n}\right)}{H_{2}\left(h_{n}\right)-h_{n-1} H_{3}\left(h_{n}\right)}
\end{array}\right.
$$

where

$$
\begin{align*}
& A(c)=\left(\begin{array}{ccc}
\left(a_{0}-a_{1}-c\right)\left(a_{1}-1\right) & 0 & -\left(a_{0}-a_{1}-c\right)\left(a_{1}-1\right) a_{1}^{2} \\
0 & a_{22} & a_{23} \\
-\left(a_{0}-a_{1}-c\right)\left(a_{1}-1\right) a_{1}^{2} & a_{32} & a_{33}
\end{array}\right), \\
& a_{22}=-2\left(a_{0}-a_{1}\right)\left(a_{1}-1\right) a_{1}^{2}+c\left(a_{0}-2 a_{1}+a_{1}^{3}-c\right), \\
& a_{23}=-2\left(a_{0}-a_{1}\right)\left(a_{1}-1\right) a_{1}^{3}+c a_{1}\left(-a_{0}+2 a_{0} a_{1}-2 a_{1}^{2}+a_{1}^{3}-a_{1} c\right), \tag{29}\\
& a_{32}=a_{23}, \\
& a_{33}=-\left(a_{0}-a_{1}\right)\left(a_{1}-1\right) a_{1}^{4}+c a_{1}\left(-a_{0} a_{1}+2 a_{0} a_{1}^{2}-a_{1}^{3}-a_{0} c\right) \\
& B(c)=\left(\begin{array}{ccc}
1 & a_{1} & 0 \\
a_{1} & a_{1}^{2}-c & 0 \\
0 & 0 & 0
\end{array}\right), \tag{30}
\end{align*}
$$

$$
\left(\begin{array}{c}
G_{1}(x) \tag{31}\\
G_{2}(x) \\
G_{3}(x)
\end{array}\right)=A\left(c_{0}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(c_{0}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right), \quad\left(\begin{array}{l}
H_{1}(x) \\
H_{2}(x) \\
H_{3}(x)
\end{array}\right)=A\left(c_{1}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(c_{1}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) .
$$

2.4. Y5

From equation (Y5)

$$
\begin{equation*}
x_{n+2} x_{n-1}=\frac{a_{1} x_{n}-a_{1} x_{n+1}+a_{3} x_{n} x_{n+1}}{a_{3}-b_{1} x_{n}+b_{1} x_{n+1}} \tag{Y5}
\end{equation*}
$$

we obtain

$$
\begin{align*}
x_{n+2} x_{n-1}\left(a_{3}-\right. & \left.b_{1} x_{n}+b_{1} x_{n+1}\right)-\left(a_{1} x_{n}-a_{1} x_{n+1}+a_{3} x_{n} x_{n+1}\right) \\
& +x_{n+1} x_{n-2}\left(a_{3}-b_{1} x_{n-1}+b_{1} x_{n}\right)-\left(a_{1} x_{n-1}-a_{1} x_{n}+a_{3} x_{n-1} x_{n}\right)=0 . \tag{32}
\end{align*}
$$

Note that we do not take a backward difference but a sum of equation (Y5) here. Equation (32) can be written as

$$
\begin{align*}
a_{3} \frac{x_{n+2}-x_{n}}{x_{n+1}} & -\frac{a_{1}}{x_{n+1}}+b_{1}\left(x_{n+2}+x_{n}\right)-b_{1} \frac{x_{n+2} x_{n}}{x_{n+1}} \\
& =a_{3} \frac{x_{n}-x_{n-2}}{x_{n-1}}-\frac{a_{1}}{x_{n-1}}+b_{1}\left(x_{n}+x_{n-2}\right)-b_{1} \frac{x_{n} x_{n-2}}{x_{n-1}} \tag{33}
\end{align*}
$$

From this equation, we obtain

$$
\left\{\begin{array}{l}
g_{n}=\frac{a_{3}\left(h_{n}-h_{n-1}\right)-a_{1}-b_{1} h_{n} h_{n-1}}{c_{1}-b_{1}\left(h_{n}+h_{n-1}\right)} \tag{34}\\
h_{n}=\frac{a_{3}\left(g_{n+1}-g_{n}\right)-a_{1}-b_{1} g_{n+1} g_{n}}{c_{0}-b_{1}\left(g_{n+1}+g_{n}\right)}
\end{array}\right.
$$

where $g_{n}=x_{2 n}, h_{n}=x_{2 n+1}$ and

$$
\begin{align*}
& c_{0}=a_{3} \frac{x_{2}-x_{0}}{x_{1}}-\frac{a_{1}}{x_{1}}+b_{1}\left(x_{2}+x_{0}\right)-b_{1} \frac{x_{2} x_{0}}{x_{1}} \tag{35}\\
& c_{1}=a_{3} \frac{x_{3}-x_{1}}{x_{2}}-\frac{a_{1}}{x_{2}}+b_{1}\left(x_{3}+x_{1}\right)-b_{1} \frac{x_{3} x_{1}}{x_{2}} \tag{36}
\end{align*}
$$

From equations (Y5) and (34), we obtain a pair of QRT systems

$$
\left\{\begin{array}{l}
g_{n+1}=\frac{G_{1}\left(g_{n}\right)-g_{n-1} G_{2}\left(g_{n}\right)}{G_{2}\left(g_{n}\right)-g_{n-1} G_{3}\left(g_{n}\right)} \tag{37}\\
h_{n+1}=\frac{H_{1}\left(h_{n}\right)-h_{n-1} H_{2}\left(h_{n}\right)}{H_{2}\left(h_{n}\right)-h_{n-1} H_{3}\left(h_{n}\right)}
\end{array}\right.
$$

where
$A(c)=\left(\begin{array}{ccc}b_{1}^{2} & 0 & -a_{3}^{2}-a_{1} b_{1} \\ 0 & 2 a_{3}^{2} & a_{1} c \\ -a_{3}^{2}-a_{1} b_{1} & a_{1} c & a_{1}^{2}\end{array}\right)$,
$B(c)=\left(\begin{array}{ccc}0 & b_{1} & 0 \\ b_{1} & -c & 0 \\ 0 & 0 & 0\end{array}\right)$,

$$
\left(\begin{array}{l}
G_{1}(x) \tag{40}\\
G_{2}(x) \\
G_{3}(x)
\end{array}\right)=A\left(c_{0}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(c_{0}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right), \quad\left(\begin{array}{l}
H_{1}(x) \\
H_{2}(x) \\
H_{3}(x)
\end{array}\right)=A\left(c_{1}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right) \times B\left(c_{1}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right)
$$

2.5. Y7

Introducing a variable transformation $x_{n}=\frac{f_{n+1}}{f_{n}}$ to equation ($Y 7$)

$$
\begin{equation*}
x_{n+2} x_{n-1}=\frac{a_{0}+a_{1} x_{n}}{a_{1} x_{n}+a_{0} x_{n} x_{n+1}} \tag{Y7}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
a_{0}\left(f_{n+1}+f_{n-1}\right)+a_{1} \frac{f_{n+1} f_{n-1}}{f_{n}}=a_{0}\left(f_{n+3}+f_{n+1}\right)+a_{1} \frac{f_{n+3} f_{n+1}}{f_{n+2}} \tag{41}
\end{equation*}
$$

From this equation, we obtain

$$
\left\{\begin{array}{l}
a_{0}\left(g_{n+1}+g_{n}\right)+a_{1} \frac{g_{n+1} g_{n}}{h_{n}}=c_{0} \tag{42}\\
a_{0}\left(h_{n}+h_{n-1}\right)+a_{1} \frac{h_{n} h_{n-1}}{g_{n}}=c_{1}
\end{array}\right.
$$

where $g_{n}=f_{2 n}, h_{n}=f_{2 n+1}$ and

$$
\begin{align*}
& c_{0}=a_{0}\left(g_{1}+g_{0}\right)+a_{1} \frac{g_{1} g_{0}}{h_{0}}=f_{0} a_{0}\left(1+x_{0} x_{1}+\frac{a_{1}}{a_{0}} x_{1}\right) \tag{43}\\
& c_{1}=a_{0}\left(h_{1}+h_{0}\right)+a_{1} \frac{h_{1} h_{0}}{g_{1}}=f_{0} a_{0} x_{0}\left(1+x_{1} x_{2}+\frac{a_{1}}{a_{0}} x_{2}\right) \tag{44}
\end{align*}
$$

From equation (42), we obtain a pair of QRT system

$$
\left\{\begin{array}{l}
g_{n+1}=\frac{G_{1}\left(g_{n}\right)-g_{n-1} G_{2}\left(g_{n}\right)}{G_{2}\left(g_{n}\right)-g_{n-1} G_{3}\left(g_{n}\right)}, \tag{45}\\
h_{n+1}=\frac{H_{1}\left(h_{n}\right)-h_{n-1} H_{2}\left(h_{n}\right)}{H_{2}\left(h_{n}\right)-h_{n-1} H_{3}\left(h_{n}\right)},
\end{array}\right.
$$

where

$$
\begin{align*}
\left(\begin{array}{l}
G_{1}(x) \\
G_{2}(x) \\
G_{3}(x)
\end{array}\right)= & \left(\begin{array}{ccc}
0 & 0 & a_{0}^{2}\left(a_{0}^{2}-a_{1}^{2}\right) \\
0 & \left(a_{0}^{2}-a_{1}^{2}\right)\left(2 a_{0}^{2}-a_{1}^{2}\right) & -a_{0}\left(2 a_{0}^{2} c_{0}-a_{1}^{2} c_{0}+a_{0} a_{1} c_{1}\right) \\
a_{0}^{2}\left(a_{0}^{2}-a_{1}^{2}\right) & -a_{0}\left(2 a_{0}^{2} c_{0}-a_{1}^{2} c_{0}+a_{0} a_{1} c_{1}\right) & a_{0} c_{0}\left(a_{0} c_{0}+a_{1} c_{1}\right)
\end{array}\right) \\
& \times\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right)\left(\begin{array}{ccc}
a_{0} a_{1} & a_{0} c_{1} & 0 \\
a_{0} c_{1} & -c_{0} c_{1} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right), \tag{46}\\
\left(\begin{array}{c}
H_{1}(x) \\
H_{2}(x) \\
H_{3}(x)
\end{array}\right)= & \left(\begin{array}{ccc}
0 & \left(a_{0}^{2}-a_{1}^{2}\right)\left(2 a_{0}^{2}-a_{1}^{2}\right) & -a_{0}\left(2 a_{0}^{2} c_{1}-a_{1}^{2} c_{1}+a_{0} a_{1} c_{0}\right) \\
0 & a_{0} c_{1}\left(a_{0} c_{1}+a_{1} c_{0}\right)
\end{array}\right) \\
a_{0}^{2}\left(a_{0}^{2}-a_{1}^{2}\right) & -a_{0}\left(2 a_{0}^{2} c_{1}-a_{1}^{2} c_{1}+a_{0} a_{1} c_{0}\right) \tag{47}
\end{align*}
$$

2.6. Y8

Introducing a dependent variable transformation $x_{n}=\mathrm{i} y_{n}, a_{1}^{\prime}=\mathrm{i} a_{1}$ to equation $(Y 8)$

$$
\begin{equation*}
x_{n+2} x_{n-1}=\frac{a_{0}+a_{1} x_{n}}{-a_{1} x_{n}+a_{0} x_{n} x_{n+1}} \tag{Y8}
\end{equation*}
$$

we obtain

$$
y_{n+2} y_{n-1}=\frac{a_{0}+a_{1}^{\prime} y_{n}}{a_{1}^{\prime} y_{n}+a_{0} y_{n} y_{n+1}}
$$

This is equivalent to equation $(Y 7)$.

2.7. Y9

Introducing a variable transformation $x_{n}=\frac{\tilde{f}_{n+1}}{f_{n}}$ to equation (Y9)

$$
\begin{equation*}
x_{n+2} x_{n-1}=\frac{x_{n}+x_{n} x_{n+1}}{1+x_{n}}, \tag{Y9}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{\tilde{f}_{n+3} \tilde{f}_{n}}{\widetilde{f}_{n+2}+\widetilde{f}_{n+1}}=\frac{\tilde{f}_{n+2} \tilde{f}_{n-1}}{\widetilde{f}_{n+1}+\widetilde{f}_{n}} \tag{48}
\end{equation*}
$$

From this equation, we obtain

$$
\begin{equation*}
\tilde{f}_{n+2} \tilde{f}_{n-1}=\alpha\left(\tilde{f}_{n+1}+\tilde{f}_{n}\right) \tag{49}
\end{equation*}
$$

By scaling as $\tilde{f}_{n}=\alpha f_{n}$, we obtain

$$
\begin{equation*}
f_{n+2} f_{n-1}=f_{n+1}+f_{n} . \tag{50}
\end{equation*}
$$

This is equation (4) in the case of $a=0$.

2.8. Y2

Equation (Y2) is written as

$$
\begin{equation*}
x_{n+2} x_{n-1}=\frac{a+a x_{n}+a x_{n+1}+x_{n} x_{n+1}}{a+x_{n}+x_{n+1}+x_{n} x_{n+1}} \tag{Y2}
\end{equation*}
$$

where $a=a_{0} / a_{3}$. Equation (Y2) is generated by a pair of second-order equation

$$
\left\{\begin{array}{l}
g_{n+1}=-g_{n}\left(1+\frac{\left(a+g_{n-1}\right)\left(b_{0}\left(a-g_{n}^{2}\right)-a c\right)}{(a-1)^{2}\left(a-g_{n}\right)\left(g_{n}+g_{n-1}\right)+b_{0} g_{n}\left(a+a g_{n}+a g_{n-1}+g_{n} g_{n-1}\right)-a c g_{n}}\right) \tag{51}\\
h_{n+1}=-h_{n}\left(1+\frac{\left(a+h_{n-1}\right)\left(b_{1}\left(a-h_{n}^{2}\right)-a c\right)}{(a-1)^{2}\left(a-h_{n}\right)\left(h_{n}+h_{n-1}\right)+b_{1} g_{n}\left(a+a h_{n}+a h_{n-1}+h_{n} h_{n-1}\right)-a c h_{n}}\right),
\end{array}\right.
$$

where $g_{n}=x_{2 n}, h_{n}=x_{2 n+1}$ and
$c=\frac{1}{x_{0} x_{1} x_{2}}\left(1+x_{0}\right)\left(1+x_{1}\right)\left(1+x_{2}\right)\left(a\left(1+x_{0}+x_{1}+x_{2}\right)+x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{0}+x_{0} x_{1} x_{2}\right)$,

$$
\begin{align*}
b_{0}= & \frac{1}{x_{0} x_{1} x_{2}}\left\{(a-1) x_{0} x_{2}\left(1+x_{1}\right)^{2}+\left(1+x_{1}+x_{0} x_{1}+x_{1} x_{2}\right)\left(a\left(1+x_{0}+x_{1}+x_{2}\right)\right.\right. \tag{52}\\
& \left.+x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{0}+x_{0} x_{1} x_{2}\right) \tag{53}
\end{align*}
$$

$b_{1}=\frac{1}{x_{1} x_{2} x_{3}}\left\{(a-1) x_{1} x_{3}\left(1+x_{2}\right)^{2}+\left(1+x_{2}+x_{1} x_{2}+x_{2} x_{3}\right)\left(a\left(1+x_{1}+x_{2}+x_{3}\right)\right.\right.$

$$
\begin{equation*}
\left.+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2} x_{3}\right) \tag{54}
\end{equation*}
$$

Equation (51) does not belong to the QRT system as it stands, though there is still a possibility that it could be reduced to the system through a change of variable.

2.9. Y3

For equation $(Y 3)$, we can only show numerical results. For various parameters a_{0}, a_{3} and initial values $x_{0} \sim x_{2}$, it is generated by a pair of second-order equations on even steps (g_{n}) and odd steps (h_{n}). In any case, both equations follows

$$
\begin{equation*}
g_{n+1}=\frac{\sum_{0 \leqslant i, j \leqslant 3} a_{i j} g_{n-1}^{i} g_{n}^{j}}{\sum_{0 \leqslant i, j \leqslant 3} b_{i j} g_{n-1}^{i} g_{n}^{j}}, \quad h_{n+1}=\frac{\sum_{0 \leqslant i, j \leqslant 3} c_{i j} h_{n-1}^{i} h_{n}^{j}}{\sum_{0 \leqslant i, j \leqslant 3} d_{i j} h_{n-1}^{i} h_{n}^{j}}, \tag{55}
\end{equation*}
$$

where $a_{i j} \sim d_{i j}$ are constant obtained from parameters and initial values numerically. This fact strongly suggests that equation $(Y 3)$ is also derived from a pair of second-order equations.

3. Ultradiscretization

In this section, we consider an ultradiscrete version of the third-order integrable equations [13, 14]. Since ultradiscretization requires a positivity of parameters and dependent variables of the equations, $(Y 1),(Y 2),(Y 4),(Y 6),(Y 7)$ and $(Y 9)$ are ultradiscretizable. We show that the procedure of ultradiscretization works well by equation (4) as an example.

If we use transformations $y_{n}=\exp \left(\frac{Y_{n}}{\epsilon}\right), a=\exp \left(\frac{A}{\epsilon}\right)$ for equation (4)

$$
y_{n+2} y_{n-1}=a+y_{n}+y_{n+1}
$$

Figure 2. A trajectory of a solution to equation (56) for $A=2.0, Y_{0}=2.0, Y_{1}=2.01, Y_{2}=-5.1$.

Figure 3. An invariant curve of equation (57) for $A=2.0, Y_{0}=2.0, Y_{1}=2.01, Y_{2}=-5.1$.
and take a limit $\epsilon \rightarrow+0$, then we have

$$
\begin{equation*}
Y_{n+2}=\max \left(A, Y_{n}, Y_{n+1}\right)-Y_{n-1} . \tag{56}
\end{equation*}
$$

This is an ultradiscrete version of equation (4). Figure 2 shows a trajectory of a solution to equation (56) in 3D phase space.

It follows from the result for equation (4) in the previous section that equation (56) is generated by a pair of ultradiscrete QRT system

$$
\begin{align*}
& U_{n+1}=\max \left(0, A+C_{0}, U_{n}+\max \left(0, C_{0}\right)\right)-U_{n-1}-\max \left(0, U_{n}\right), \tag{57}\\
& V_{n+1}=\max \left(0, A+C_{1}, V_{n}+\max \left(0, C_{1}\right)\right)-V_{n-1}-\max \left(0, V_{n}\right), \tag{58}\\
& C_{0}=\max \left(0, Y_{0}\right)+\max \left(0, Y_{2}\right)-Y_{1}, \tag{59}\\
& C_{1}=\max \left(0, Y_{1}\right)+\max \left(0, Y_{3}\right)-Y_{2}, \tag{60}
\end{align*}
$$

and invariant curves become

$$
\begin{align*}
& \max \left(U_{n}+U_{n+1}, \max \left(U_{n}, U_{n+1}\right)+\max \left(0, C_{0}\right), \max \left(U_{n}-U_{n+1}, U_{n+1}-U_{n}\right)+\max \left(0, C_{0}\right)\right. \\
& \quad \max \left(-U_{n},-U_{n+1}\right)+\max \left(0, C_{0}, A+C_{0}, 2 C_{0}\right) \\
& \left.\quad-U_{n}-U_{n+1}+\max \left(0, C_{0}\right)+\max \left(0, A+C_{0}\right)\right)=K_{0} \tag{61}
\end{align*}
$$

and

$$
\begin{align*}
\max \left(V_{n}+V_{n+1}\right. & , \max \left(V_{n}, V_{n+1}\right)+\max \left(0, C_{1}\right), \max \left(V_{n}-V_{n+1}, V_{n+1}-V_{n}\right)+\max \left(0, C_{1}\right), \\
& \max \left(-V_{n},-V_{n+1}\right)+\max \left(0, C_{1}, A+C_{1}, 2 C_{1}\right), \\
& \left.-V_{n}-V_{n+1}+\max \left(0, C_{1}\right)+\max \left(0, A+C_{1}\right)\right)=K_{1} . \tag{62}
\end{align*}
$$

Figure 3 shows invariant curves for equation (57) determined by equation (61).

4. Conclusion

In this paper, we have shown that the third-order integrable difference equations proposed by Hirota, Kimura and Yahagi are generated by a pair of second-order integrable difference equations. In the case of equations $(Y 1)$ and $(Y 4)-(Y 9)$, second-order difference equations are a special case of the QRT system. In the case of equations $(Y 2)$ and $(Y 3)$, second-order equations may not be the QRT system. Furthermore, we have shown that the procedure of ultradiscretization works well for third-order equation, and derived second-order equations and invariants curves are also ultradiscretizable.

Although the whole integrability structure of the general third-order equations is still unknown, our work could be one of the keys to understanding the structure. Generating our results, that is, investigating a connection between the general QRT system and the third-order equations is an important future problem.

Acknowledgment

The authors express their sincere thanks to Professor Ryogo Hirota for fruitful discussions and encouragement.

References

[1] Grammaticos B, Ramani A and Papageorgiou V 1991 Phys. Rev. Lett. 671825
[2] Hietarinta J and Viallet C 1998 Phys. Rev. Lett. 81325
[3] Sakai H 2001 Commun. Math. Phys. 220165
[4] Takenawa T 2001 J. Phys. A: Math. Gen. 34 L95
[5] Ramani A, Grammaticos B and Ohta Y 2001 Commun. Math. Phys. 217315
[6] Ramani A, Grammaticos B and Ohta Y 2001 J. Phys. A: Math. Gen. 342505
[7] Tsuda T 2004 J. Phys. A: Math. Gen. 372721
[8] Kajiwara K, Masuda T, Noumi M, Ohta Y and Yamada Y 2003 J. Phys. A: Math. Gen. 36 L263
[9] Quispel G, Robert J and Thompson C 1988 Phys. Lett. A 126419
[10] Quispel G, Robert J and Thompson C 1989 Physica D 34183
[11] Ramani A, Grammaticos B and Hietarinta J 1991 Phys. Rev. Lett. 671829
[12] Hirota R, Kimura K and Yahagi H 2001 J. Phys. A: Math. Gen. 3410377
[13] Tokihiro T, Takahashi D, Matsukidaira J and Satsuma J 1996 Phys. Rev. Lett. 763247
[14] Matsukidaira J, Satsuma J, Takahashi D, Tokihiro T and Torii M 1997 Phys. Lett. A 255287

